So0C/ASIC/SoC-FPGA/S-ASIC

Design and Verification
Methodology

Courtesy of Cadence design

Intelop Corporation
4800 Great America Pkwy.
Ste-201
Santa Clara, CA. 95054
Ph: 408-496-0333, Fax: 408-496-0444
www.intelop.com

Challenges in Embedded Systems Design

» Real operating environment of ES is difficult to
reproduce. -> In-system verification is necessary.

» Total design flow of ES until the implementation
is long and complex. -> Verification must be
started early.

% Design turn-around time must be short as the
life-time of ES itself is quite short. -> Short
verification cycle

Critical Issues

1. Verify Right :

Always make sure you have correct specifications to start with.
(Frequent interaction with SPECIFIER, customer, marketing,
etc.)

In-System Verification
Check Properties in Formal Techniques.

2. Verify Early
System-level, Heterogeneous Models, SW-HW

3. Verify Appropriately
HW-SW Co-simulation

4. Verify Fast
Hardware Acceleration, Emulation

Accommodate Multiple Levels of Design
Representation

Exploit Hardware, Software and Interfacing
mechanisms as Verification Tools

t Verification Effort size

« Verification portion of design increases to anywhere from
50 to 80% of total development effort for the design.

+ About 50% of flaws are functional flaws.
+ Need verification method to fix logical & functional flaws

Other
99,
Clocki
5%

&

intelop

sl-—-1>

Overview of Verification Methodologies

Prototyping

ardware
Accelerated

imulatiop
Baﬁ!: _ Semi-formal
verification Verification
Formal
Verification

tool

Software Simulation

Dynamic verification method
Bugs are found by running the design implementation.
Thoroughness depends on the test vector used.

Some parts are tested repeatedly while other parts are
not even tested.

Testbench

a = 1;
#20 b = 1;
sdisplay ("status is = %d",c);

Software Simulation

Pros

The design size is limited only by the computing
resource.

Simulation can be started as soon as the RTL
description is finished.

Set-up cost is minimal.
Ccons

Slow (~100 cycles/sec) ; Speed gap between the
speed of software simulation and real silicon widens.

(Simulation speed = size of the circuit simulated /
speed of the simulation engine)

The designer does not exactly know how much
percentage of the design have been tested.

Hardware Acceleration

Simulation performance is improved by moving the
time-consuming part of the design to hardware.

Usually, the software simulation communicates with
FPGA-based hardware accelerator.

Simulation environment Hardware
Accelerator

Testbench

Module 2 is
Hn:d& um:ue / synthesized &

compiled into
FPGAs

Madule 2

Pros
Fast (100K cycles/sec)
Cheaper than hardware emulation
Debugging is easier as the circuit structure is unchanged.

Not an Overhead : Deployed as a step stone in the gradual
refinement

Cons (Obstacles to overcome)

Set-up time overhead to map RTL design into the hardware can
be substantial.

SW-HW communication speed can degrade the performance.
Debugging of signals within the hardware can be difficult.

Emulation

Imitating the function of another system to achieve the
same results as the imitated system.

Usually, the emulation hardware comprises an array of
FPGA'’s (or special-type processors) and interconnection
scheme among them.

About 1000 times faster than simulation.

Prototyping

Emulation
TardwarZ

Accelerated
:-.. Ula -

User logic design is mapped to emulation board with
multiple FPGA's or special processors.

The emulation board has external interconnection
hardware that emulates the pins of final chip.

Logic design Emulation hardware with multiple FFPGAs

Design

&
— mapping
-, L ﬂ
b *

—

External pins

Overview of Verification Methodologies

Formal verification

Application of logical reasoning to the development of digital
system

Both design and its specification are described by a language in
which semantics are based on mathematical rigor.

Semi-formal verification
Combination of simulation and formal verification.

Formal verification cannot fully cover large designs, and
simulation can come to aid in verifying the large design.

emi-forma Formal
Verification Verification

More complete verification
Formal Verification

Objective

Check properties of model with all possible conditions
Pros

Assures 100% coverage.

Fast.
Cons

Works only for small-size finite state systems.

Uncomfortable due to culture difference (E.g., engineers are
not familiar with the use of temporal logic used for "property”
description in Model Checking)

Formal Verification : equivalence Check

Equivalence checker compares the golden model with the refined
model.

7

Functional representations are extracted from the designs and
compared mathematically.
Pros
Exhaustive design coverage
Very fast
Cons
Memory explosion

Tools such as LEC (Verplex), Formality (Synopsys), FormalPro
(Mentor) supports Equivalence checking.

Formal Verification : equivalence Check

Object
Checks equivalence of two models
+ RTL vs. gate
+ Before optimization vs. after optimization
+ Before test insertion vs. after
+ Reference model vs. implementation

Advantage

Guarantee functional equivalence of two models for all input
values

Disadvantage

Needs golden reference model
Targets implementation errors rather than design bugs

Theorem Proving

Deductive verification
Use axioms and proof rules to model the system (formal system).
State the property to be verified as a theorem of this formal system.

Derive this theorem with the help of a theorem-prover which generates
rules derivable from axiom and premises.

Useful for verifying algorithm
Disadvantage

Very hard to automate.

Requires user interaction.

Deriving the formal system can be quite cumbersome.

Requires an expert to use the theorem-prover.
Industrial success story

AMD K7 floating point verification

Intel instruction decoder verification

N, Formal Verification : Model Check

Model checking verifies that the design satisfies a
property specified using temporal logic.

7
] S

Computational Tree Logic
Specify the temporal relationship among states in FSM with
temporal operators;
+ A (always), E (exists) — path quantifier
+ G (global), F (future), X (next), U (until) — temporal modality

Formal Verification : Model Checking

Object
Check properties of model with all possible conditions
Advantage
Can be fully automated
If the property does not hold, a counter-example will be generated
Relatively easy to use
Problem
Works (well) only for finite state systems.
Needs abstraction or extraction which tend to cause errors

Formal Verification : Challenges

Challenges

The most critical issue of formal verification is the
“state explosion” problem.

The application of current formal methods are
limited to the design of up to 500 flip-flops.

Researches about complexity reductions are :
+ Reachability analysis

+ Design state abstraction

+ Design decomposition

+ State projection

Semi-Formal Verification : Assertion

Simulation Quality of assertion-based verification

4
©
c
B -
Y= ’.-*‘
0 r
=1 Simulation with assertions o
I s Efficiency of
— & assertion
#
o r
- &
2 e"f
#i
= - -
= Formal verification P o
4 & e Simulation
-.t‘t:"‘::“u""'“‘
. 2 & -
> Time, Effort
Setup Describe
testbench assertions By IBM in “Computer-Aided Verification” 2000

Semi-Formal Verification : Coverage

Coverage-directed verification

Increase the probability of bug detection by checking the
‘quality’ of stimulus

Used as a guide for the generation of input stimulus

Test Plan Random —
(Coverage # Directives # Test - Test Vectors
Definltion Generator

Coverage Coverage
Reports <: analyslgs Simulation

Semi-Formal Verification : Coverage

Coverage metrics for coverage-directed verification

Code-based metrics
+ Line/code block coverage
+ Branch/conditional coverage
+ Path coverage
Circuit structure based metrics
+ Toggle coverage
+ Register activity
State-space based metrics
+ Pair-arcs : usually covered by Line + condition coverage
Spec.-based metrics
+ % of specification items satisfied

Semi-Formal Verification : Coverage

Coverage Checking tools
VeriCover (Veritools)
SureCov (Verisity)
Coverscan (Cadence)
HDLScore, VeriCov (Summit Design)
HDLCover, VeriSure (TransEDA)
Polaris (Synopsys)
Covermeter (Synopsys)

Semi-Formal Verification

Pros

Designer can measure the coverage of the test environment as
the formal properties are checked during simulation.

Cons

The simulation speed is degraded as the properties are
checked during simulation.

Challenges

There is no unified testbench description method.

It is difficult to guide the direction of test vectors to increase
the coverage of the design.

Development of more efficient coverage metric to represent
the behavior of the design.

Design Complexity

Gate counts

Comments

Simulation/Semi-
formal verification

Unlimited

Emulation/Hardware-
accelerated simulation

1M~16M gates

Depends on the number
of FPGA's in the
architecture

Prototyping

1M~5M gates

Depends on the
components on the board

Formal verification

< 10K gates

Limited to about 500 flip-
flops due to state
explosion

Language Heritage for SoC Design

New languages are developed to fill the productivity gap.

Language for
Software development

Assembly

Language for TestBuilder
Hardware test

SystemC

SystemVerilog
Verilog

Schematic VHDL

Past ; Present Future

SystemC 1in SoC Design

SystemC is a modeling platform consisting of
A set of C++ class library,

Including a simulation kernel that supports hardware
modeling concepts at the system level, behavioral level and
register transfer level.

SystemC enables us to effectively create
A cycle-accurate model of
+ Software algorithm,
+ Hardware architecture, and
+ Interfaces of System-on-a-Chip.
Program in SystemC can be
An executable specification of the system.

SystemC 1in SoC Design

Modules, ports, and signals € for hierarchy
< for concurrency
& for time
Hardware data types < for bit vectors, 4-valued logic,
fixed-point types, arbitrary precision integers
Waiting and watching < for reactivity
Channel interface, and event < for abstract communications

SC_main

Abstraction Levels of SystemC

C/C++ |
SystemC ‘

Verilog/VHDL

\

Algorithm level

Untimed functional level

Timed functional level

Bus-cycle accurate level

Cycle accurate level

Behavioral level

RT level

Gate level

Function hierarchy
Modular structure
Timing information

Intra module: un-timed
Inter module: cycle accurate

Cycle accurate

Synthesizable

Vera (Synopsys)

Inputs to VERA
ouT
dut.v vera.vrl a8 _ -
Constraints written in
\L OpenVera syntax
VERA

Functional verification language for testbench description
OpenVera is a language specification.
VERA (Synopsys) is a testbench generation tool.

Vera (Synopsys)

Inputs to VERA
DUT Vera constraints

OpenVera source codes
are compiled and runs
with HDL simulator in
which DUT is simulated.

VCS (simulator)

top.v

Generateyl files frowg VERA

ut.shell.v dut.vro

Template PLI function Vera object file.

top module wrapper

(binary PLI functions
or DirectC objects)

> top.v
(“) dut shell.v
T @y
Simulator simulates
and report file is
generated.

System Verilog

SystemVerilog 3.1 provides design constructs
for architectural, algorithmic and transaction-
based modeling.

Adds an environment for automated

testbench generation, while providing assertions to
describe design functionality, including complex
protocols, to drive verification using simulation or formal
verification techniqgues.

Its C-API provides the ability to mix Verilog and C/C++
constructs without the need for PLI for direct data
exchange.

System Verilog

New data types for higher data abstraction level than
Verilog
Structures, classes, lists, etc. are supported.

Assertion
Assertions can be embedded directly in Verilog RTL.
Sequential assertion is also supported.

Encapsulated interfaces

Most system bugs occur in interfaces between blocks.

With encapsulated interfaces, the designer can concentrate on
the communications rather than on the signals and wires.

DirectC as a fast C-API

C codes can be called directly from the SystemVerilog codes.

100 Key Components of System Verilog

Veritication

Testbench Assertions

Design

Concise design

Interface features

System Design Language Summary

Languge Pros Cons

C/C++ Easy to write test Unable to handle some
vectors/environment hardware environments.

HDL Familiarity Focuses on the lower-level

(Verilog, Easy to describe H/W designs.

VHDL) designs Improper for system

modeling.
SystemC Easily connected to Limited tools (simulation,

C/C++ codes.

Easy to model system
behaviors.

synthesis, etc.)

SystemVerilog

Easy to learn for the
HDL designers.

Easy to model system
behaviors.

Few tools (simulation,
synthesis, etc.)

SoC Verification

Co-simulation
Connecting ISS with HDL simulation environment

Seamless, N2C

Co-emulation
Emulation/rapid-prototyping equipments supporting
co-emulation
ARM Integrator, Aptix System Explorer, AXIS XoC,
Dynalith iPROVE

Embedded Processor Cores in SoC

Core Company

ARM ARM, Inc. 32-bit RISC microprocessor, Thumb for
minimization of system cost

PPC440 IBM Dual-issue superscalar processor

MIPS MIPS 32/64-bit synthesizable hard cores

Xtensa Tensilica 32-bit Xtensa architecture, Predefined
reconfigurable functional units, Development
of new instruction set

ZSP600 LSI Logic 6-issue superscalar DSP architecture

StarCore SC140 | Motorola 16-bit fixed-point VLIW DSP core (with Agere
systems)

ARCtangent ARC, Inc. 32-bit RISC/DSP core, Reconfigurable
Instruction sets for DSP/General-purpose

Pine, Oak DSP Group 16-bit fixed-point DSP core

Jazz DSP Improv Systems Configurable VLIW DSP architecture

Models of Embedded Processor

Instruction Set Simulator
Architecture Behavior Model
Processor Simulation Model
Hardware module with Real Chip

Instruction Set Simulator

Simulates the behavior of instructions and exceptions
(interrupts)

Not cycle-accurate

Architecture Behavior Model

Cycle-accurate behavior model usually written in C/C++ library.

Internal registers are visible but the delays including setup and
hold time are not modeled. ex) ARM’s CCM

Cosimulation of HDL simulator and architecture behavior model

HDL simulator

Procassor PLI/FLIS)} T Amhimc{m re
model wrapper | VPI/VHPI | E;ha;ul.')r
oge

Models of Embedded Processor

Processor Simulation Model

Behavioral model of the processor written in
HDL(Verilog/VHDL)

Fully matching the core functionality and cycle accurate

Usually, the simulation model is composed of compiled model
and timing (min/typ/max pin-to-pin delay) model.
+ Compiled model : Pre-compiled and not visible to the user
+ Timing model
min/typ/max pin-to-pin delay
setup/hold time for each pin

Very slow : 5-500 cycles/sec.

Models of Embedded Processor

Hardware module with Real Chip

Real chip includes the embedded processor core with or
without peripherals

The hardware module is composed of the processor core chip
and program/data memory.

Example of the coemulation with hardware module

SW i HW
HOL simulator g
Processor PLI/FLI/
model wrapper | VPI/VHP : i
API/ [HW - B
Drivers | | Interface
: (e.g., PCI)

Verification with Embedded Processor

Verification with ISS
ISS is the fastest SW model.

The speed bottleneck is the synchronization overhead between
software and HDL simulator as well as the HDL simulation.

Memory read/write
tran=action commands
are catched by the
memory access
routine,

IS5 AUL simulator
(Instruction Set

Simulator)

Transactor generates
detailed signal timing
on the intemal SoC
bus.

Memory access
control Routine

(C/C++)

Transactor

Verification with Embedded Processor

Verification with Real Chip Modules and FPGAs

Stacked real chip modules are connected to FPGAs by physical bus
wires.

Multiple FPGAs are debugged by PCI-connected signal analyzer
(Waveform viewer) and processors are debugged by JTAG-based
debuggers for each processor.

SW iHW

FPGA array
[[

<:> FPGA PGA Bus model for
Byc,:m r embedded processor
ACArON

zer
{(PCl)

Signal

Analyzer
far IP's

(for multiple cOxe verification)

F’bl

Emulator
In-system emulator
HW-SW co-debugging

ngg Tool utilized in HW-SW Co-Verification
Eﬂ-
T
-
L 2 HW-SW
paritioning _anon" Verfication
Functional | ¥ : o i | e
"‘-.:" Develilfment ""‘l._‘. Deve%"pment d
o i rnemers| | S lenen

High-level synthesis
Testbench automation
IP accelerator

HW-SW co-simulation
ISS
RTOS simulator

intelop

Tool utilized in Co-Simulation

sl-—-1>
o

& Software debugging in ISS and hardware verification in
HDL simulator are done in parallel way.

& Co-simulation stub manages the communication
between HDL simulator and ISS.

& The most accurate solution albeit very slow

& Commercial Products
Eagle/ (Synopsys), Seamless (Mentor)

Co—simulation HDL

Cebugging
Interface

Conclusion

Verification is challenging; It needs strategy!
Starategy is to apply each method when appropriate.

Verify as early as possible; Catch the bug when it is small and still
isolated in @ smaller region. (Don’t wait until it grows and kills you.)
15t step: Apply formal methods

Static formal verification

Assertion-based verification
2nd step: Simulate IP with transaction level test-bench

Test-bench automation tools
31 step: Emulate design

Emulate IP operation in FPGA

In-system IP verification

Cycle-level vs. transaction level test-bench

Conclusion

Main differences of SoC with ASIC design are
Planned IP-reuse
Reuse of pre-verified platform
Focus on co-verification with software

Newly added IP’s must be thoroughly verified utilizing automated
testbench and formal methods, if possible.

Well-established emulation platform helps,
Progressive refinement of newly added SoC components
Early development and verification of software
Powerful debugging features handling both hardware part and
software part are required.
Language, Tool/Data Interfaces need standardization.

DFV (Design for Verification) ; You lose in the beginning, but will
win later, like Design for Reuse.

